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Driving Forces

� Platform Complexity
�Parallelism
�Memory hierarchy
�Grids

� Application Complexity
�Sheer size
�Diversity of components, languages, paradigms
�Application composition

� MADIC study: 10,000 apps, untrusting developers
�Need for software reliability

� Shortage of Professional Developers
�Need for greater productivity
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Implications I

� Many traditional compiler decisions will be made late
�Grid: Target platforms known just before execution

� May need to change during execution
� Applications will need to adapt (but should the user do this)

�Optimizations may be determined at run time
� In response to problem data

� Compilation is becoming a process consisting of many steps
�Steps take place at different times in the program preparation

process
� When procedure compiled
� When program defined
� When platform(s) determined
� When data known
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Grid Compilation Architecture

� Goal: reliable performance under varying load

Whole-
Program
Compiler

Libraries

Dynamic
Optimizer

Real-time
Performance

Monitor

Performance
Problem

Service
Negotiator

Scheduler

Grid
Runtime
System

Source
Appli-
cation

Config-
urable
Object

Program

Software
Components

Performance 
Feedback

Negotiation

GrADS Project: Berman, Chien, Cooper, Dongarra, Foster, Gannon, 
Johnsson, Kennedy, Kesselman, Mellor-Crummey, Reed, Torczon, Wolski



Center for High Performance Software Research

Compiling with Data

CompilerCompiler

ApplicationApplication

ProgramProgram



Center for High Performance Software Research

Compiling with Data

CompilerCompiler

Reduced 
Application
Reduced 
Application

ProgramProgram

Slowly-
Changing Data

Slowly-
Changing Data



Center for High Performance Software Research

Compiling with Data

CompilerCompiler

Reduced 
Application
Reduced 
Application

ProgramProgram

Rapidly-
Changing Data

Rapidly-
Changing Data

Slowly-
Changing Data

Slowly-
Changing Data

AnswersAnswers



Center for High Performance Software Research

Run-Time Compilation

CompilerCompiler

ApplicationApplication

ProgramProgram



Center for High Performance Software Research

Run-Time Compilation

CompilerCompiler

ApplicationApplication

ProgramProgram

Slowly-
Changing Data

Slowly-
Changing Data Pre-OptimizerPre-Optimizer



Center for High Performance Software Research

Run-Time Compilation

CompilerCompiler

ApplicationApplication

ProgramProgram

Rapidly-
Changing Data

Rapidly-
Changing Data

Slowly-
Changing Data

Slowly-
Changing Data

AnswersAnswers

Pre-OptimizerPre-Optimizer



Center for High Performance Software Research

Implications II

� Need to provide support for application migration across
platforms
�Self-tuning applications

� Examples: Atlas, FFTW, �
�Throw computer time at the problem

� Need to involve the end user in application development
�More focus on high-level domain-specific programming systems

� Example: popularity of Matlab
�Strategy: High-level programming systems based on libraries coded

by experts
�Problem of performance

� Optimizations should treat libraries as language primitives
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Implications III

� Compiler technology can play a role in reliability
�Reliability and security of networked systems must be a national

priority
�Many security and reliability problems arise from hand optimizations

in context
� Example: stack overflow in server software

�Compilers can perform many of these optimizations mechanically on
carefully coded modules intended for general use
� If we can make compiler technology reliable
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Summary

� Target platforms and applications continue to become more
complicated
�Complexity for compiler
�Complexity for user

� Shortage of programming talent
�Throw computer time at the problem of platform migration
�Involve end users in programming
�Use experts for components, compilers for optimization

� Reliability and security must be increased
�Mechanical optimization in context can help

� But only if compilers can be made reliable


